Edital para seleção de alunos para realização de:

Trabalho de Conclusão de Curso (a ser confirmada, junto à coordenação do curso do interessado, a possibilidade de orientação pelo professor Agnelo)

Projeto de Iniciação Científica

Projeto Voluntário Acadêmico

Professor orientador:

Agnelo Denis Vieira - Departamento de Engenharia de Produção - UFPR

Público alvo: alunos dos cursos:

Engenharia de Produção - UFPR

Engenharia Elétrica - UFPR

Engenharia Mecânica - UFPR

Tecnologia em Análise e Desenvolvimento de Sistemas - SEPT UFPR

Requisitos:

Competência e interesse na área de desenvolvimento do projeto

Disponibilidade para reuniões de trabalho do grupo de estudos em Tecnologias da Indústria 4.0

Para Iniciação científica, disponibilidade para dedicação de 20h semanais ao projeto sendo pelo menos 10h de atividades presenciais no Laboratório Tecnologias da Indústria 4.0 - DEP.

Agendamento de horário:

Os interessados devem agendar horário através do link informado abaixo:

https://calendar.app.google/JqwVNhTSpsBgLKRq8

Dúvidas:

Encaminhar email para o endereço agnelo.vieira@ufpr.br especificando no campo Assunto o texto "Processo seletivo: TCC IC PVA"

Projeto com disponibilidade de orientação:

<u>Projet</u>	o Tecnologias da Indústria 4.0
	Sistema de atuação e supervisão remoto baseado em Node Red envolvendo Arduno/ESP32 e
	Raspberry Pi com rede CAN
	Sistema de atuação e supervisão remoto baseado em Node Red envolvendo Arduno/ESP32 e
	Raspberry Pi com rede Ethernet sem fio e protocolo MQTT
	Sistema de atuação e supervisão remoto baseado em CodeSys envolvendo Arduno/ESP32 e
	Raspberry Pi com rede Modbus
	Sistema de atuação e supervisão remoto baseado em CodeSys envolvendo Arduno/ESP32 e
	Raspberry Pi com rede Ethernet e protocolo OPC UA
	Configuração e implementação de rede de comunicação LORA
	Configuração e implementação de rede de comunicação CAN envolvendo Arduino ESP32
	Raspberry Pi e PLC Wago PFC200
	Configuração e implementação de sistema IEC 6113 CodeSys em Raspeberry Pi com
	desenvolvimento de interfaces eletrônicas (entradas e saídas digitais e analógicas)
	Desenvolvimento de interface eletrônica para acionamento de motor de passo e leitura de
	encoder através de sinais analógicos
	Desenvolvimento de interface eletrônica para acionamento de motor de passo e leitura de
	encoder através de rede CAN
	Desenvolvimento de interface eletrônica para acionamento de motor de passo e leitura de
	encoder através de rede Modbus
	Projeto, impressão 3D e, operacionalização de módulos para mini fábrica de ensino
	aprendizagem em Tecnologias da Indústria 4.0
	- CNC 3 eixos utilizando GRBL ou equivalente
	- sistema de manipulação e transformação de peças
	- integração de mini robô manipuladro controlado por Arduino e ESP32
	Projeto e implementação de sistema de comissionamento virtual de sistema de automação
	industrial integrando Plant Simulation e PLC WAGO PFC200 ou Raspberry PI com Codesys
	Projeto e implementação de sistema de comissionamento virtual de sistema de automação
	industrial integrando Factory IO e PLC WAGO PFC200 ou Raspberry PI com Codesys
	Comissionamento virtual de Sistema Flexível de Manufatura (FMS) em sistema de simulação
	Plant Simulation e software de simulação Plant Simulation com comunicação através do
	protocolo OPC UA
	Programação de Arduino e ESP32 aplicando linguagens de programação de CLP definidas pela
	norma IEC 61131-3
	Projeto, impressão 3D e, operacionalização de veículo autônomo com navegação por fusão de
	informações oriundas de sensores: inercial; de medição de deslocamento; de identificação do
	campo magnético terrestre; GPS; ultrasônico; infravermelho
	Aplicação do método passo-a-passo para controle de sistemas sequenciais através de
	controladores Arduino e ESP32
	Operacionalização de impressora 3D e desenvolvimento de projetos
l	_ eperacionalização de impressora do e desentoralimento de projetos

Projeto Job Shop Schedulling	
	Implementação de algoritmo genético para agendamento da produção de arranjo do tipo job
	shop
	Implementação de sistema Advanced Production System (APS) para elaboração de Master Production Scheduling (MPS) considerando limitações de capacidade baseado em Algoritmo Genético
	Implementação computacional da heurística Shifting Bottleneck para agendamento da produção de arranho do tipo job shop

Os interessados podem propor projetos alternativos associados aos temas envolvidos nos projetos acima relacionados: